Public Health Reports

Vol. 58 - APRIL 23, 1943 - No. 17

REPORTED WHOOPING COUGH MORBIDITY AND MORTALITY IN THE UNITED STATES

By C. C. Dauer, Epidemiologist, District of Columbia Health Department

Although whooping cough has always been known to be an especially fatal disease in the very young it has not claimed as much attention as some of the other acute infectious diseases of childhood. Its relative importance as a cause of death at the present time may be judged by the fact that it causes more deaths in children under 2 years of age than any other acute infection with the exception of pneumonia and the diarrheas.

Mortality data on this disease are available for States and cities in the United States for variable periods of time depending on the year when the various political units were admitted to the Registration Area. In a few instances morbidity records are available for certain States and cities since 1910, and for the entire country with the exception of two States since 1925. Prior to these dates the disease was not listed as reportable in most States.

The sources of statistical data used in this report were varied. Mortality data were obtained from published and unpublished reports of the Division of Vital Statistics, Bureau of the Census, Washington, D. C. Morbidity data were obtained either from published reports of the various States or from supplements to Public Health Reports on notifiable diseases. All morbidity data are compilations of reported cases in the various States, the completeness of which apparently varies widely.

Trend of mortality and morbidity.-The general trend of mortality from whooping cough in the United States since 1900 may be estimated by the trend for the Registration States of 1900 . During the 5 -year period from 1900 the mortality was 10.2 per 100,000 population and during the next two decades there was a decline of about 20 percent, the rate for the period from 1920 to 1924, inclusive, being 8.1. Beginning about 1925 mortality from whooping cough began to decline rapidly so that the rate for the 5 -year period from 1935 to 1939 was only 1.8 , a decline of about 80 percent in 15 years.

The reason for this marked decline in mortality from whooping cough since 1900 is not apparent. It does not appear to be due to a change in ascribing deaths from this cause to bronchopneumonia. During the period from 1920 to 1939 mortality rates from bronchopneumonia among persons under 5 years of age showed a decline nearly equal to that from whooping cough. For instance, in Massachusetts there was a decline of approximately 60 percent in mortality from bronchopneumonia in this age group while it amounted to 80 percent in Connecticut.

Figure 1.-Reported case and mortality rates in certain States and cities, 1910-1939.
The general trend of morbidity and mortality in certain States and cities for which data are available continuously since 1910 is shown in figure 1 and in table 1 of the appendix. During the 30 -year period from 1910 to 1939 morbidity rates increased; undoubtedly this trend was due principally to more complete reporting of cases rather than to an actual increase in incidence of the disease. On the other hand the trend of mortality for this same group of States and cities was in the opposite direction, that is, a decline which was approximately, equal to that of the Registration States of 1900 . The number of
cases per death gradually increased over this same period from an average of about 10 cases per death in 1910 to approximately 100 in the 5 -year period from 1935 to 1939.
Regional differences in morbidity and mortality.-Morbidity and mortality rates for all sections of the country are shown by States in table 2 of the appendix for three 5-year periods from 1925 to 1939. In many States there has been an increase in morbidity rates and at the same time a substantial decrease in mortality. However, there have been wide differences in both reported morbidity and mortality when certain sections of the country are compared with others. Differences among States of the same region also were found. For instance, the mortality rates were higher in the South Atlantic, East and West South Central, and Mountain States than in other sections. Among the Mountain States there has been a wide variation in mortality; the rates for New Mexico and Arizona have on the average been twice as high as for other States of that section. Morbidity rates have shown even more variation in the different sections of the country, which probably is due in part to wide variations in completeness of reporting. The number of cases reported per death have shown equally wide variations, in general a greater number being reported in States with relatively low mortality rates such as in the northeastern section of the country and in the Pacific States.

A more detailed picture of the regional differences in mortality from whooping cough may be gained by studying its distribution by counties as illustrated in the accompanying map (fig. 2). When calculating the mortality rates for the individual counties for the 5 -year period from 1935 to 1939, the total number of deaths and the population under 5 years of age (1940 census) were used. Since the number of deaths by specific age groups is not available for individual counties, and because 95 to 98 percent of all deaths from whooping cough are in children under 5 years of age, the above method of calculating rates was considered to be the best method of showing regional differences in mortality.

During the period from 1935 to 1939, inclusive, the mortality rate from whooping cough calculated on the basis described above was 45 for the country as a whole. The accompanying map shows that most of the counties with high mortality rates, 75 or more, were located in the Southern and Mountain States. A total of 471, or 15 percent, of all the counties in the United States had rates of 75 or more. However, in 107 of the 471 counties the average number of deaths per year was less than one, and the population was 1,000 or less. Onehalf of the 107 counties were located in the North Central and Mountain States where a fairly large number of counties have small populations. The high rates in this large number of counties are not without some significance.

Figure 2.

The 364 counties which had an average of one or more deaths per year and rates of 75 or more were concentrated in the South Atlantic, South Central, and Mountain States. The population of these counties is predominantly rural in character. Only two counties contained cities of 100,000 population or more-Charleston County, S. C. (Charleston City), and Henrico Countẏ, Va. (Richmond City). A more detailed consideration of the relationship between mortality from whooping cough and rural population will be found later in this report.

Morbidity and mortality by age groups.-The study of whooping cough morbidity by age groups is handicapped by a number of deficiencies in available data. In the first place only a few States publish or have available numbers of cases reported by single years under the age of 5 or 10 . Still fewer States have data available over a period of years which would make it possible to determine whether or not there has been any change in the age distribution of cases. The data from certain States are unduly weighted by case reports from the larger cities which make it difficult to draw any conclusions regarding the real age distribution of cases for the State as a whole. Still other reports show a fairly large proportion of cases whose ages are classified as unknown. However, Fales (1) has expressed the opinion that there was no reason for supposing that the distribution of these cases of unknown age was any different from the group of known age.

In spite of these deficiencies the available data as shown in figure 3 and table 3 of the appendix suggest that there are fairly wide differences in age distribution of cases in different sections of the country and that changes have occurred in certain sections during the past 15 to 20 years.

The age distribution of cases in the New England and Middle Atlantic States in recent years has been different from that in southern States. For the years 1935 to 1939, inclusive, a larger percentage of cases were in children under 5 years of age in Alabama, Tennessee, Maryland, and Virginia, than was the case in Connecticut, Massachusetts, New Jersey, and New York State, exclusive of New York City. The distribution for Minnesota is similar to that for the northeastern States while that for Colorado resembles the distribution in southern States. In the States for which reports are available on the number of cases by single years under the age of 10 the largest number reported in any one year also varies in the North and South. In Connecticut, Massachusetts, and New York, exclusive of New York City, the greatest number were reported in the sixth year while in Alabama the number under 1 year of age was largest. While the largest number of white cases was in the 6 -year group in Virginia the greater concentration of cases under 5 years of age is consistent with the data for other southern States for which there are records. The
age distribution of reported cases among Negroes shows a very marked concentration in the first 2 years, and especially in infants under 1 year. However, reporting of cases appears to be very incomplete for the Negro population; consequently the preponderance of reported cases in the very young may be misleading.

Other infectious diseases common in childhood such as diphtheria, poliomyelitis, and scarlet fever show similar geographical differences in age distribution of cases. These diseases, like whooping cough, are more frequently encountered in children under 5 years of age in southern than in northern States.

Figure 3.-Whooping cough mortality rates in the Registration States of 1900 by age groups, 1900-1939.
It also appears that there has been some shift in the age distribution of reported cases in certain parts of the country. Prior to 1925 the largest number reported was among children 3 years of age in such States as Connecticut, Massachusetts, and New York. In the 5 -year period from 1935 to 1939 the greatest number reported in these northern States was in the sixth year. The ratio of the total number of reported cases under 5 years of age io the total in the 5 - to 9 -year group was 1.4:1.0 prior to 1925 in these States. In other words, the number
under 5 years of age was 40 percent greater than the number 5 to 9 years. In the 5 -year period from 1935 to 1939 the ratio had changed so that approximately the same number of cases was reported in each age group. However, the ratio of case rates under 5 years of age to those 5 to 9 years showed less change over the same period of time. The ratio prior to 1925 was 1.3:1.0 and in 1935 to 1939, inclusive, it was 1.1:1.0. This would seem to suggest that changes in the age composition of the population were partially responsible for a shift in the age distribution of reported cases of whooping cough. Data for the State of Alabama from 1925 to 1939 show comparatively little change in age distribution of reported cases or in morbidity rates among white persons. The data for Maryland seem to indicate changes midway between those for Connecticut and Massachusetts on the one hand and Alabama on the other.

Whooping cough mortality data by age groups are available for a much larger proportion of the population of the United States and over a longer period of time than morbidity statistics. Mortality data undoubtedly are much more completely recorded than morbidity figures.
' In table 4 of the appendix the percentage distribution of deaths from whooping cough by certain age groups in the various geographical divisions of the country is shown for the period from 1935 to 1939, inclusive. There was no marked variation in percentage of deaths for the different groups under 15 years of age in the various sections except for a slightly lower percentage of deaths in the colored under 6 months of age as compared with the white. However, the proportion of deaths in children under 1 year of age has been approximately the same for both racial groups. The concentration of deaths in the first 2 years of life, especially under 6 months, is constant for all parts of the United States. No other acute communicable disease of childhood, except pneumonia and the diarrheas, shows such a marked concentration in the early years of life.

Some change has taken place in the percentage distribution of deaths in the various age groups during the past four decades. The proportion of deaths in infants under 1 year of age in the Registration States of 1900 increased from slightly more than one-half to approximately two-thirds of the total during the period from 1900 to 1939, inclusive. This shift in age distribution of deaths from whooping cough is exactly opposite that of cases, which, as stated above, is probably due in part to a change in age composition of the population.

The trend of mortality from whooping cough since 1900 has been progressively downward. In the Registration States of 1900 the greatest rate of decline, 87.5 percent, has taken place in the population 10 years of age and over. The 5 - to 9 - and 1 - to 4 -year groups experi-
enced nearly the same decrease, namely 80 percent. Under 1 year of age mortality showed a decline of 70.5 percent. As shown in figure 4 the rates have been declining steadily since 1900 in the group 10 years of age and over, while in the 5 - to 9 - and 1 - to 4 -year groups the decrease in mortality began about 1920. Not until 1925 was there any appreciable decline in mortality under 1 year of age. Since 1925 the rate of decline has been of the same order in all of the age groups.

Table 5 in the appendix shows the mortality rates by age groups for each State for three 5 -year periods from 1925 to 1939 . Nearly all

Figore 4.-Percentage distribution of reported cases of whooping cough in Connecticut, Massachusetts, and Alabama by age groups.

States have shown a fairly consistent decrease in mortality in the various age groups. Within the various sections there was some difference in mortality in the different groups but the rates in the southern and Mountain States were on the average much higher than those in other parts of the country. The lowest mortality occurred in the Middle Atlantic and Pacific States. Mortality was twice as high among colored persons as for white under 1 year and 5 to 9 years of age, and about three times higher in the 1 - to 4 -year group.

Sex differences in whooping cough morbidity and mortality.-The higher mortality from whooping cough among females has been found in all parts of the world. One explanation frequently given for the
higher rates in females is that complications occur more frequently because of a smaller lumen in the female larynx which acts as a mechanical obstruction during paroxysms of coughing. However, this hypothesis has not been universally accepted. Hill (2) in a study of mortality from whooping cough in England and Wales suggested that the difference might be due to a greater susceptibility to clinical attack, especially after the age of 2 years.

Morbidity data in the United States are available for only a comparatively few States in a form which permits a comparison of the relative numbers of cases reported by age and sex. However, the data shown in table 1 indicate that for ages under 10 years there has been no great excess in the number of reported ases among females while in age of 10 and over the excess has been quite striking. It must be borne in mind that in ages of 20 and over when the emale excess of cases was most marked only a ew cases were reported compared with the younger ages. The possibility that cases among females in tho older age groups are more completely reported cannot be ignored and there probably is a greater amount of exposure of adult females to children with whooping cough.

Table 1.-Ratio of female to male cases of whooping cough by age groups reported in certain States, 1935-1939

Age in years	Connecticut	New Jersey	Maryland		Alabama	
			White	Colored	White	Colored
Under 1.	0.95	1.00	1.01	0.98	1.21	1.11
1 to 4....	1.04	1.06	1.11	1.31	1.11	1.07
5 to 9......	1.63	1.07	1.11	1.01	1.08	1. 25
10 to 14..	1.10	1.15	1.06	1.65	. 83	1. 71
15 to 19...	. 89	1. 27	. 84	1.00	1.36	1. 23
20 and over.-	2.00	3.56	2.74	3.00	1.12	1.15

The ratio of female to male mortality from whooping cough shows an excess among females of all age groups. For the Registration Area the ratio of female to male deaths among white persons during the 5 -year period from 1935 to 1939 was 1.09 under 1 year of age, 1.40 for 1 - to 4 -year group, 1.32 in the 5 - to 9 -year group, and 1.39 for those 10 years of age and over. Deaths among colored persons for the same years showed the following ratios: 1.10 under 1 year of age, 1.23 in the 1 - to 4 -year group, 1.20 in the 5 - to 9 -year group, and 1.17 in those 10 years of age and over. For all ages the white and colored ratios were 1.20 and 1.15 , respectively. The ratio of rates for various racial groups in the United States (see table 2) indicate that all racial groups have an excess in female mortality.

Racial differences in mortality from whooping cough.-If reported cases are used to determine the incidence rates of whooping cough, it would have to be concluded that the incidence is much higher among
white persons than among colored. This does not seem reasonable, and since reliable data are not available to judge the relative differences in the white and colored populations any discussion of racial differences in morbidity will be omitted.

The differences in mortality in the white and colored populations of the southern States have already been mentioned in this report. The rates for the latter have been two to three times higher than those for the former, and this difference has existed in all age groups. Crude mortality rates have been calculated for several nonwhite groups in the Registration Area and tabulated in table 2. For the two 5 -year periods from 1930 to 1939 the rates for Negroes were more than twice those for the white. The mortality among Indians has been more than six times higher, but among the Chinese and Japanese combined the rate has been approximately the same as for the white. The excess of mortality among females has been less for Negroes and greater for Indian and Chinese and Japanese than for the white population.

Table 2.-Mortality rates per 100,000 population (all ages) from whooping cough in different racial groups in the registration area, by sex and ratio of female to male mortality

There has been very little difference in percentage distribution of deaths by age groups for white, Negro, and all other nonwhites combined in the Registration Area except for a slightly higher proportion of deaths among white infants under 6 months of age. When the first 2 years are combined the distribution is nearly identical for all racial groups.

Discussion.-In different parts of this report comment was made on the higher death rates from whooping cough in the southern and Mountain States. This difference was evident in crude and age specific rates by States and also in the distribution by counties. In attempting to explain these geographical differences in mortality many factors would have to be taken into consideration, some of which can be measured statistically while others are more intangible and cannot be measured at all or very inaccurately.

One of the striking characteristics of the population of States or counties in which there were relatively high rates of mortality from whooping cough from 1935 to 1939 ，inclusive，is the predominantly rural distribution of population，which includes all those living on farms and in villages with less than 2,500 inhabitants．This is in agreement with Godfrey＇s（8）statement in a report on whooping cough in New York State that mortality had been relatively high in villages and rural areas of that State．The percent of rural population in the individual States shows a high degree of correlation with mor－ tality particularly with the age group under 1 year（table 3）．

Table 3．－Coefficients of correlation between certain factors and whooping cough mortality by States

－	Mortality rates per 100，000 population		
	Under 1 year	1 to 4 years	5 to 9 years
	$+.77 \pm .06$	$+.52 \pm .10$	$+53 \pm .10$
Percent of dwellings with 1.51 or more persons per room．．．．－	＋．88土．03	$+.58 \pm .09$ $+\quad 55 \pm 10$	＋．60士． 09
Percent of families with 3 or Percent nonwhite population．	$+.84 \pm .07$ $+.50 \pm .11$	$+.54 \pm .11$ $+.44 \pm .11$	＋．34土．13
Percent of illiteracy in persons 21 years or older	＋．71土． 07	＋．54土． 10	＋．40土． 12

A relatively large percentage of rural population may be a rough index of a comparatively low density of population per square mile of land area，but this may mask a certain amount of crowding within individual dwelling units．When the percentage of dwellings aver－ aging 1.51 or more persons per room is correlated with mortality from whooping cough the resulting coefficient is of a very high order， $+.88 \pm .03$ for the age group under 1 year，and somewhat less sig－ nificant for children 1 to 4 and 5 to 9 years．Likewise，the percentage of families with three or more children under 10 years of age also shows a fairly high degree of correlation with mortality．

Although mortality rates are generally higher among nonwhite than white persons there is not as high a degree of correlation between the percentage of nonwhite population and mortality as was the case with the other factors discussed．This may be partly due to the fact that several States with relatively high mortality in the Mountain region have included in their white populations certain groups among whom the mortality rates are probably as high as among Negroes and Indians． Included in this category are relatively large numbers of Mexicans or persons of Spanish－American parentage．

It appears that the amount of illiteracy in the population may also be related in some manner with whooping cough mortality because there is a fairly high degree of correlation between the percentage of illiterates 21 years of age or older in the population and the death rate from whooping cough．

It does not seem unreasonable to suppose that these various factors which show a fairly high degree of correlation with mortality, especially among infants, are interrelated in their effects. A population living for the most part in rural areas on farms or in small villages, many of the dwellings housing more than an average of 1.5 person per room, many of the families having three or more children under 10 years of age, and a fairly large proportion of the adults being illiterate would seem to form an ideal combination of factors favoring high mortality from whooping cough.

The more intangible factors are those concerned with medical care. Comparatively few counties with relatively high mortality rates include large cities where hospitals and the services of physicians and nurses are more accessible. The lack of these facilities, their inaccessibility, or nonutilization of them even though available probably have contributed to the higher mortality in certain rural areas.

In recent years there has been an increasing interest in the development and use of prophylactic inoculations of whooping cough vaccine. Although a number of favorable reports on the use of vaccine have appeared, it has not been given on a sufficiently large scale to make it possible to judge its value in reducing mortality. If mortality continues to decline at the same rate during the next 15 years that it did during the past 15 years, it will be extremely difficult to show statistically that this prophylactic procedure had any effect in reducing mortality from whooping cough. Furthermore, with a large percentage of deaths (40 percent) occurring in infants under 6 months of age, inoculations would have to be given at an extremely early age to be effective. Whether or not vaccination would be effective if given before 3 months of age remains to be seen.

REFERENCES

(1) Fales, W. T.: The age distribution of whooping cough, chickenpox, scarlet fever, and diphtheria in various areas of the United States. Am. J. Hyg., 8:759 (1928).
(2) Hill, A. B.: Some aspects of the mortality from whooping cough. J. Royal Statistical Soc., $96: 250$ (1933).
(3) Godfrey, E. S., Jr.: Epidemiology of whooping cough. New York State J. Med., 28:1410 (1928).

APPENDIX

Table 1:-Reported case and death rates from whooping cough per 100,000 population, and number of cases per death in certain States and cities, 1910-89

Years	Con-necticut	$\begin{gathered} \text { Massa- } \\ \text { chu- } \\ \text { setts } \end{gathered}$	New York State, exclusive of New Yorz City	New York City	$\begin{aligned} & \text { Chi- } \\ & \text { cago } \end{aligned}$	Michigan	Wisconsin	$\underset{\text { Sas }}{\substack{\text { Kan- }}}$	Utah
	Reported case rates								
1910-14...	114	96	134	63	110	46	43	72	593
1915-19..	129	165	194	101	132	68	102	99	560
1920-24.	190	190	263	105	135	159	228	162	892
1925-29.	190	200	230	77	99	185	255	186	759
1935-39.	189	225	280	102	128	224	300	180	873
	205	182	227	98	167	243	320	137	595
	Death rates								
1910-14.	12.2	6.9	9.3	6.9	6.1	9.0	8.5	6.4	13.2
1915-19.	11.3	12.7	7.9	7.6	5.5	8.7	6.4	8.0	9.6
1920-24.	9.0	8.6	6.5	6.2	4.5	8.1	6.3	6.6	13.6
1925-29	5.0	5.6	4.8	4.1	3.1	5.7	3.7	4.5	10.1
1930-34.	2.1	3.0	2.9	2.1	1.7	3.6	2.6	3.1	4.1
1935-39	1.4	1.4	2.0	1.1	1.5	2.2	1.7	1.9	3.6
	Number of cases per death								
1910-14	9	14	14	9	18	5	5	11	45
1915-19.	11	13	25	13	24	8	16	12	48
1920-24.	21	22	40	17	30	20	36	24	66
1925-29	38	36	48	19	32	32	70	42	75
1930-34	90	75	97	50	75	66	115	58	213
1935-39.	146	130	113	90	110	110	188	72	170

Table 2.-Whooping cough case and death rates per 100,000 population and number of cases reported per death by States, 1925-39

Table 2.--Whooping cough case and death rates per 100,000 population and number of cases reported per death by States, 1925-39-Continued

Table 3.-Percentage distribution of cases of whooping cough by age groups in certain States

Table 3-Percentage distribution of cases of whooping cough by age groups in certain States-Continued

State	Age group (years)													
	$\begin{gathered} \mathrm{On}-1 \\ \operatorname{der} 1 \end{gathered}$	1	2	3	4	0-4	5	6	7	8	9	5-9	10-14	15 and over
Alabama.														
1925-29	14.3	11.8	11.7	9.9	9.8	57.2	8.4	9.8	7.2	5. 6	3.3	34.3	5. 9	2.5
1935-39	17.5	11.1	9.7	8.9	8.9	56.1	7.4	9.6	6.9	6.5	4.2	34.6	7.0	2.4
Colored:														
1925-29.	30.0	19.2	12.7	7.9	6.3	76.1	4.7	5.4	2.7	3.1	1.7	17.6	3. 5	2.9
1935-39.	32.1	13.1	11.0	11.2	7.7	75.1	4.5	4.7	4.1	3.6	2.2	19.1	2.9	2.7
Tennessee:														
White: 1935-39	12.0	12.3	10.5		9.4	53.2					---	37.8	7.3	1.6
Colored:														
Minnesota:	23.7	16.4	14.0		8.6	71.9		---	.-.		---	22.0	5.3	. 9
1930-34.	6.7	7.1	8.5	9.6	9.7	41.5						53.6	4.1	. 7
1935-39.	7.9	7.4	8.9	9.6	9.9	44.0						50.7	4.5	. 8
Colorado: 1938-39..	10.4	9.0	10.0	11.8	10.3	51.5						41.9	4.9	1.4

Table 4.-Percentage distribution of deaths from whooping cough by age groups in various geographical sections of the United States, 1935-39

Geographical Section	Age group							
	Under 5 months	$\begin{gathered} \text { 6-11 } \\ \text { months } \end{gathered}$	$\stackrel{1}{\text { year }}$	$\underset{\text { years }}{2}$	$\stackrel{3}{\text { years }}$	$\stackrel{4}{\text { years }}$	$\underset{\text { years }}{5-9}$	$\begin{aligned} & \text { 10-14 } \\ & \text { years } \end{aligned}$
New England.	41.3	28.3	21.8	7.3	2.9	1.7	2.8	0.1
Middle Atlantic.	39.6	24.8	20.7	6.8	3.0	1.6	2.3	. 3
East North Central	41.0	26.9	20.9	6. 9	2.9	1.8	3. 1	.6
West North Central	43.8	21.9	17.7	6.6	3.1	1.9	3.5	. 6
South Atlantic:	36.9	24.8	22.5	6.3	3.7	2.1	3.0	. 7
White-......	39.5	21.8	22.2	6.8	3.0	2.3	3. 1	. 6
Colored --.-....	30.0	34.8	22.1	6.5	4.3	2.0	2.7	. 7
East South Central: Total	37.7	22.6	22.9	7.7	3.9	2.1	3.6	8
White-	39.5	19.6	22.3	7.5	3.7	1.9	3.6	. 9
Colored.....	33.1	22.8	24.1	7.9	4.3	2.4	3.5	. 6
West South Central:			20.4	6.2	3.3			
White.	42.0 44.0	21.4	20.4	6.0	3.3	1.3	2.6	.6
Colored	37.3	22.1	20.1	6.9	4.1	2.3	3.4	. 6
Mountain.-	39.0	23.3	20.8	7.7	2.7	2.1	3.3	. 4
Pacific----	41.8	23.7	19.4	5.9	2.7	1.2	3.0	. 7
Registration area:								
White	40.0 42.3	24.2 23.5	21.8 21.4	7.1	3.2 3.0	1.7 1.6	2.9 3.0	. 5
Colored.	33.0	20.2	23.0	7.4	4.1	2.0	2.9	. 7

Table 5.-Mortality rates from whooping cough by age groups, 1925-s9

Division and State	Under 1 year			1 to 4 years			5 to 9 years			10 years and over		
	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1835 \\ \text { to } \\ 1939 \end{gathered}$	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1935 \\ \text { to } \\ 1939 \end{gathered}$	$\begin{aligned} & 1925 \\ & \text { to } \\ & 1929 \end{aligned}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1935 \\ \text { to } \\ 1939 \end{gathered}$	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	1935 to 1939
NEW ENGLAND:	242.8	243.3	134.2	29.4	19.3	16.1	2.1	2.5	1.1	0.25	0.09	0.03
New Hampshire.	200.0	221.3	104.0	29.1	18.3	13.3	2.9	1.4	1.0	0	. 05	0
Vermont-..-....	285.6	168.0	135. ${ }^{\text {c }}$	17.0	11.5	11.4	2.3	3.5	. 6	. 20	. 20	. 07
Massachusetts.	192.0	1109.4	62.2	33.2 55.8	14.0 17.1	88.1	1.4 8.1	. 9	.	. 22		. 01
Rhode Island.	322.1 173.1	140.0 96.5	70.0	65.8 27.1	17.1	11.7 5.8	8.1 1.3	. 6			. 03	. 01
$515735^{\circ}-43$												

Table 5.-Mortality rates from whooping cough by age groups, 1925-s9-Con.

Division and State	Under 1 year			1 to ${ }^{1}$ years			6 to 9 years			10 years and over		
	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1935 \\ \text { to } \\ 1039 \end{gathered}$	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1835 \\ \text { to } \\ 1939 \end{gathered}$	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 19344 \end{gathered}$	$\begin{gathered} 1935 \\ \text { to } \\ 1039 \end{gathered}$	$\begin{gathered} 1925 \\ \text { to } \\ 1929 \end{gathered}$	$\begin{gathered} 1930 \\ \text { to } \\ 1934 \end{gathered}$	$\begin{gathered} 1935 \\ \text { to } \\ 1039 \end{gathered}$
New Jersey...	188.0	93.4	67.1	32.8	14.2	9.6	1.9	. 7	5	. 02	. 03	. 02
Pennsylvania	210.3	122.3	80.9	32.5	18.1	10.2	1.3	6	. 3	. 05	. 03	. 01
east north central: Ohio	211.4	121.7	98.8	35.5	18.4	13.4	2.0	1.6	1.1	. 04	. 07	05
Indiana.	241.8	163.6	114.2	40.3	20.7	11.6	2.4	2.0	1.3	. 06	.07	. 02
Illinois.	141.5	99.8	94.0	25.2	17.4	12.2	1.2	. 9	1.0	. 03	. 01	. 02
Michigan	189.8	124.6	86.2	28.5	15.8	10.0	1.2	. 9	. 5	. 04	. 04	. 04
Wisconsin	145.3	98.7	82.3	17.0	11.0	5.1	. 7	. 8	7		. 05	. 01
west north central:	153.6	103.8	84.9	16.6	11.1	4.9	1.3	. 9	1		. 08	. 01
Iowa	162.6	130.0	91.9	19.3	10.3	9.8	1.8	1.2	7	. 07	. 06	. 03
Missouri	230.5	175.8	142.8	40.0	26.8	19.0	3.1	1.5	1.4	. 08	. 07	. 06
North D	203.2	140.7	155.0	25.6	13.2	12.0	2.7	. 8	9	. 04		. 08
South Dak		172.7	110.9		27.0	12.9		2.2	1.6		. 11	. 08
Nebraska	166.2	142.1	69.6	22.8	14.2	7.4	. 9	2.0	1.0	. 07	. 09	. 03
Kansas	150.9	108.0	82.8	24.0	15.0	7.5	. 6	1.8	2	.01	. 04	. 04
SOUTH ATLANTIC:												
White	244.1	161.8	85.0	36.7	20.8	14.1	2.5	. 9	. 8	. 08	. 05	. 09
District of Columbi White.		57.9	57.5	24.4	18.1	10.7	0	3.3	. 8	0		0
Colored	551.5	472.7	412.1	104.8	69.5	48.6	6.0	3.7	4.0	. 50	. 52	. 62
West Virginia	295.7	244.5	186.0	58.0	41.7	25.6	3.7	2.5	2.0	. 16	. 13	. 09
North Carolina:												
Colored	190.0	170.0 370.0	134.5 272	27.4	23.8	15.0 37.0	1.7	1.7	2.6	. 47	. 17	. 05
Colored	402.1	391.4	290.0	55.1	49.5	42.4	4.4	3.0	2.0	. 46	. 20	. 20
Georgia:												
White		160.0	125.4		23.4	14.8		1.6	9		. 05	. 01
Colored		276.4	200.0		41.2	25.9		3.5	1.6		. 09	. 09
White.	137.7	95.8	101.0	14.9	11.1	8.2	8	9	. 6	. 05	. 13	. 07
Colored	304.5	170.8	183.5	29.0	26.0	27.0	3.7	3.9	1.3	. 06	.16	. 15
EAST SOUTH CENTRAL:												
White.	223.0	200.7	164.0	49.7	36.6	24.4	3.6	2.9	1.5	. 14	. 16	. 05
Colored.	437.8	489.5	355.0	110.4	63.4	72.2	5.4	5.0	3.9	. 22		. 11
Tennessee:												
White Colored	220.0 379.0	175.6 392.6	155.0 236.9	44.6 86.1	30.8 76.1	20.6 38.9	2.9 6	2.0 3.6	1.8	. 12	. 10	. 13
Alabama:												
White	202.4	180.8	135.1	34.3	27.6	17.2	2.7	2.0	1.4	16	12	. 04
Colored	331.4	270.4	204.0	60.0	42.9	27.9	2.1	1.6	2.2	. 22	. 16	. 21
Mississippi:												
White.	188.4	170.0	122.7	27.2	19.1	13.8	. 8	1.5	2.1	19	. 09	. 11
Colored	387.1	291.8	156.5	59.2	50.7	27.3	3.5	3.9	2.6	. 29	. 36	. 12
WEST SOUTH CENTRAL:----												
White		150.0	132.3		23.1	16.6		1.7	1.0		. 07	. 13
Colored		215.0	190.4		40.0	32.4		2.2	1.9		. 16	. 06
Louisiana:												
White	214.6	145.2	124.5	25.6	18.3	9.7	1.4	1.4	. 9	. 06	. 10	$0^{.02}$
Colored	372.0	269.1	208.1	57.1	34.8	25.6	5.7	3.5	1.5	.34	. 42	
Oklahoma		152.8	147.0		18.0	14.2		1.2	1.3		. 09	. 11
Texas..			154.8			16.0			1.1			. 05
countain:												
Monta	175.5	146.4	155.0	25.5	20.5	17.3	1.8	2.3	1.3	. 23	$\cdot 18$	${ }^{0} 05$
W yoming	174.9	155.5	147.9	24.4 30.0	10.8	28.8	1.2	2.8	1.2 3.5	. 23	. 16	. 20
Colorado.	304.6	256.6	173.3	50.6	42.6	20.8	2.5	2.3	6	. 16	. 14	. 08
New Mexico		235.0	300.0.		40.0	41.8		2.8	2.3		. 41	10
Arizons		300.0	289.3		55.0	37.0		2.7	2.7		. 11	$0^{.37}$
Utah	255.0	165.0	110.0	39.6	15.8	12.9	. 9	. 3	1.8	06	. 15	
Nevada.		181.2	217.1		13.0	8.2		2.6	0		0	0
$\begin{aligned} & \text { PACIFTC: } \\ & \text { W ashington. } \end{aligned}$	143.2	90.3	56.1	17.2	7.4	6.4	2.4	1.1	. 6	. 01	0	. 08
Oregon...	152.3	108.8	87.6	18.4	11.9	6.3	. 8	1.2	. 8	. 03	. 07	. 02
Caifornia	260.2	132.7	95.1	34.6	18.7	10.5	1.7	1.1	. 7	. 34	. 19	. 15

SICKNESS ABSENTEEISM AMONG INDUSTRIAL WORKERS, FINAL QUARTER OF 1942, WITH A NOTE ON THE OCCURRENCE OF BRONCHITIS AND PNEUMONIA, 1933-42 ${ }^{1}$

By W. M. Gafafer, Senior Statistician, United States Public Health Service

The accompanying data are derived from analyses of periodic reports on sickness and nonindustrial injuries causing disability lasting more than 7 days among approximately 250,000 male members of

Figure 1.-A verage annual number of absences per 1,000 males on account of sickness and nonindustrial injuries disabling for 8 consecutive calendar days or longer, by broad cause group, variation of the fourth quarter rates with time; experience of male employees in various industries, 1933-42, inclusive.
industrial sick benefit associations, group insurance plans, and company relief departments.

[^0]Final quarter of 1942.-The rate of 95.3 for sickness yields a 16 percent excess when compared with the corresponding rate (81.9) for 1941, and a 28 percent excess when compared with the mean of the corresponding rates for the 10 years 1933-42. The excess in the fourth quarter sickness rate shown by a comparison of 1942 with 1941 reflects principally the 44 percent increase in the rate for the respiratory diseases, each of the cause groups of the respiratory group showing an increase. Of considerable interest are the increases of 138 percent in pneumonia, 54 percent in influenza and grippe, and 27 percent in bronchitis.

Figure 2.-A verage annual number of absences per 1,000 males on account of bronchitis and pneumonia disabling for 8 consective calendar days or longer, variation of specific quarterly rates with time; experience of male employees in various industries, 1933-42, inclusive. (Legend: Solid line, 1st quarter; broken line, 2d quarter; dash-one dot, 3d quarter; dash-two dots, 4th quarter.)

The rate for the nonrespiratory-nondigestive diseases (31.5) does not show a notable increase when compared with the corresponding rate for the preceding year but it is the highest recorded for the 10 -year experience, being 13 percent in excess of the 10 -year mean (27.9).

The fourth quarter rates for the broad cause groups covering the period 1933-42 are shown graphically in figure 1 .

Bronchitis and pneumonia, 1933-42.-Figure 2 shows for each of the 4 quarters the increasing trends over a 10 -year period in the rates for bronchitis and pneumonia, the pneumonia rates representing, respectively, the experience for all males, and for those employed and not employed in the iron and steel industry.

The 1942 fourth quarter rate for bronchitis is 60 percent above the mean (5.0) of the 10 fourth quarters covering 1933-42. The corresponding excess for pneumonia, all males, is 130 percent while for the iron and steel workers, and the noniron and steel workers, the pneumonia excess is 145 percent and 64 percent, respectively. The notable excess shown by the iron and steel workers might be partially attributed to the extraordinary increase in the number of iron and steel workers during the latter part of the 10 -year period.

Table 1.-Average annual number of absences on account of sickness and nonindustrial injuries disabling for 8 consecutive calendar days or longer among wale employees in various industries, by cause, the fourth quarter of 1942 compared with the fourth quarter of 1941, and the year 1949 compared uith the years 1937-41, inclusive ${ }^{1}$

Cause (Numbers in parentheses are disease title numbers from the International List of Causes of Death, 1939)	Annual number of absences per 1,000 males				
	Fourth quarter		Year		
	1942	1941	1942	1941	1937-41
Sickness and nonindustrial injuries-	106.5	94.3	105.3	102.5	94.9
	11.2	12.4	11.6	12.0	11.
Sickness....--.......-	95.3 47.8	81.9 33.1	93.7 41.4	41.6	83.4 36.6
Respiratory diseases Tuberculosis of the respiratory system (13).......-.	$\begin{array}{r}47.8 \\ \hline 8\end{array}$	$\begin{array}{r}33.15 \\ \hline 1.5\end{array}$	$\begin{array}{r}41.4 \\ \hline 18\end{array}$	41.6 .7	36.6
Influenza, grippe (33)	18.6	12.1	15.7	19.2	17.0
Bronchitis, acute and chronic (106)	8.0	6.3	6.7	5.8	4.9
Pneumonia, all forms (107-109)-.-.-.-.--	6.9	2.9	5. 5	3.8	3.2
Diseases of the pharynx and tonsils (115b, 115c).-	4.9 8.6	4.3	5.2 7.5	5.5	5.0 5.7
Other respiratory diseases (104, 105, 110-114)-	8.6 13.7	15.6	16.0	15.3	14.2
	1.7 4	15.6 4.5	4.7	4.1	3.9
Diarrhea and enteritis (120)........................-	1.5	1.4	1.8	1.5	1.3
Appendicitis (121).	3.7	5.5	4.8	5.2	4.7
Hernia (1228) ...--	1.6	1.4	1.8	1.6	1.
Other digestive diseases (115a, 115d, 116, 122b129)	2.5	2.8	2.9 342	2.9 30.5	2.7
Nonrespiratory-nondigestive diseases .------------	31.5	30.2	34.2	30.5	30.1
Infectious and parasitic diseases (1-12, 14-24, 26-$29,31,32,34-44)^{2}$	1.6	2.4	2.5	2.5	2.
Rheumatism, acute and chronic (58, 59)	3.6	3.3	3.9	3.8	3.
Neurasthenia and the like (part of 84d)	1.1	. 8	1.1	. 9	1.
Neuralgia, neuritis, sciatica (87b)	2.3	2.2	2.2	2.1	2.
Other diseases of the nervous system (80-85, 87, except part of 84d, and 87b)	1.1	1.5	1.1	1.3	
Diseases of the heart and arteries, and nephritis (90-99, 102, 130-132)	4.4	3.5	4.4	4.0	
Other diseases of the genitourinary system (133138)	2.5	2.5	2.6	2.4	2.
Diseases of the skin (151-153)---1--.--	2.8	2.5	3.0	2.8	
Diseases of the organs of movement except diseases of the joints (156b)	2.9	3.1	3.0	3.0	
```All other diseases (45-57, \(60-79,88,89,100,101\), \(103,154,155,156 a, 157,162)\)```	9.2	8. 4	10.4	7.7	7.3
IIl-defined and unknown causes (200).-.-..............---	2.3	3.0	2.1	3.1	2.
Average number of males covered in the record Number of organizations.	264, 241	245, 611	261, 756	232,180 22	966, 101

[^1]
# PREVALENCE OF DISEASE 

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

## UNITED STATES

## REPORTS FROM STATES FOR WEEK ENDED APRIL 17, 1943

## Summary

The continued high incidence of meningococcus meningitis and the excess in urban deaths as compared with last year and the 3 -year (1940-42) average are the most important features of the present health situation as revealed by current communicable disease reports and mortality in large cities.

A total of 604 cases of meningococcus meningitis was reported for the week, as compared with 587 for the preceding week (exclusive of delayed reports for both weeks). As compared with the preceding week, decreases were recorded in the New England, East and West South Central, and Mountain States, and as compared with the averages for the past 3 weeks decreases were reported in those areas and also in the Pacific States, while an increase was shown in the Mountain States. Other areas recorded increases over both the preceding week and the 3 -week average. States reporting the largest numbers during the current week were as follows (preceding week's figures in parentheses): New York, 69 (48); Pennsylvania, 43 (39); Massachusetts, 40 (38); California, 38 (38); Missouri, 36 (33); Virgịnia, 27 (29); North Carolina, 26 (20); New Jersey, 23 (28). The cumulative total for the first 15 weeks of the year is 7,051 , as compared with 1,152 for the same period of 1942 and a 5 -year median of 766 .

Included in other reports for the week are the following: Anthrax, 1 case (in Pennsylvania); dysentery, all forms, 257; infectious encephalitis, 11 ; Rocky Mountain spotted fever, 4 ; tularemia, 12; and endemic typhus fever, 36.

Deaths recorded during the current week in 87 large cities of the United States aggregated 9,602, as compared with 9,434 for the preceding week and a 3 -year average of 8,691 . The accumulated number for the first 15 weeks of the year is 147,923 , as compared with 135,235 for the same period last year.

Tolegraphic morbidity reports from State health officers for the week ended April 17, 194s, and comparison with corresponding week of 1942 and 5-year median
In these tables a coro indicates a definite report, while leaders imply that, although none were reported, caces may have occured.


Telegraphic morbidity reports from State health officers for week ended Ap.il 17, 1948, and comparison with corresponding week of 1942 and 5-year median-Con.


See fontnotes at end of table.

Telegraphic morbidity reports from State health officers for the week ended April 17, 1945, and comparison with corresponding week of 1942 and 5-year median-Con.


[^2]
## WEEELY REPORTS FROM CITIES

City reports for week ended April S, 1945
This table lists the reports from 80 cities of more than 10,000 poppiation distributed throughout the United States, and represents a cross section of the current urben incidence of the diseases included in the table.


City reports for week onded April S, 194s-Continued


City reports for week ended April S，1948－Continued

－			Influenza							$\begin{aligned} & \text { 器 } \\ & \text { K } \\ & \text { K } \\ & \text { 曾 } \\ & \text { 品 } \end{aligned}$		
			$\begin{aligned} & \text { \&/ } \\ & 0 \\ & 0 \end{aligned}$									
Pacimic												
Washington：												
Seattle．．．	3	0		1	111	2	8	0	4	0		
Spokane．	1	0	1	1	150	0	4	0	3	0	0	6
Tacoma－－－．．．．．．．．．．．．－－	0	0		0	17	0	0	0	2	0	0	0
California：												
Los Angeles．．．．．．．．．－－	0	0	11	3	99	2	5	0	14	0	0	45
Sacramento ．．．．．．．．．．．．	0 1	0		0	10 80	12	16	1	3 22	0	0	${ }^{1}$
Total．	69	3	178	44	7，355	207	538	3	1，646	0	14	1，212
Corresponding week 1942	62	1	147	31	4，897	49	438	3	1，427	5	17	${ }^{961}$
Average，1938－42．．．．．	83		318	147	2 5，487				1，677	12	20	1，097

Anthrax．－Cases：Milwaukee，1；Camden， 1.
Dysentery，amebic．－Cases：New York，20；Chicago， 1.
Dysentery，bacillary．－Cases：Cleveland，1；St．Louis，2；Charleston，S．C．，2；Buffalo，1；New York，4； Los Angeles， 3.
Dysentery，unspecified．－Cases：San Antonio， 3.
Tularemia．－Cases：Columbus，1；Wichita， 1.
13－year average，1940－42．
2 5－year median．
Rates（annual basis）per 100，000 population，by geographic groups，for the 89 cities in the preceding table（estimated population，1942，34，720，600）

	Diphtheria cases		Influenza									
			$\begin{aligned} & \stackrel{0}{0} \\ & \text { On } \\ & 0 \end{aligned}$									
NEW ENG．	2.5	0.0	2.5	2.5	1，498	77.0	166.5	0.0	738	0.0	2.5	348
Mid．ATL	8.9	0.9	14.3	5.4	1， 868	33.0	68.2	0.0	268	0.0	1.3	109
E．NO．CEN	11.7	0.0	5.8	5.8	1． 299	14.0	68.9	0.0	268	0.0	1.8	178
w．No．CEN	5.9	2.0	2.0	0.0	1，339	52.8	91.9	0.0	166	0.0	2.0	260
So．ATL	6.8	0.0	121.6	12.0	－ 396	41.1	83.9	1.7	168	0.0	3.4	320
E．So．CEN	0.0	0.0	112.8	23.8	1，669	0.0	83． 2	0.0	54	0.0	11.9	202
w．so．CEN	20.5	0.0	35.2	5.9	1， 287	20.5	132.0	0.0	47	0.0	5.9	70
MOUNTAIN．	40.2	0.0	160.8	8． 0	6， 624	24.1	80.4	8.0	265	0.0	0.0	354
PACIFIC．	15.7	0.0	21.0	10.5	816	29.7	61.2	1.7	84	0.0	0.0	177
Total	10.4	0.5	26.7	6.5	1，105	31.1	80.8	0.5	247	0.0	2.1	182

## PLAGUE INFECTION IN CALIFORNIA AND WASHINGTON

Plague infection has been reported proved in specimens collected in California and Washington as follows：

## CALIFORNIA

Monterey County．－March 30 and 31，in specimens of tissue and fleas from wood rats（Neotoma fuscipes），meadow mice（Microtus califor－ nicus），and mice（Peromyscus sp．）collected in Camp Hunter Liggett， Jolon，Monterey County，Calif．，as follows：Tissue from 1 rat； 2 pools
of tissue from rats, one of which consisted of tissue from 4 rats from a collection of 41 ; tissue from 1 meadow mouse; a pool of 237 fleas from 76 rats; a pool of 100 fleas from 87 meadow mice; a pool of 21 fleas from 4 meadow mice; a pool of 50 fleas from 51 meadow mice; a pool of 234 fleas from 108 meadow mice; and a pool of 35 fleas from mice, 3 species of mice, Peromyscus.

## WASHINGTON

Pierce County-Tacoma.-March 23, in tissue from 1 rat (R. norvegicus), and March 29, in a pool of 30 fleas from 76 rats, same species, all from frame buildings in industrial sections of Tacoma, Wash.

## TERRITORIES AND POSSESSIONS

## Hawaii Territory

Plague (human).-On April 11, one death from bubonic plague was reported in a woman 35 years of age, in the Hamakua District, Island of Hawaii, T. H. This is the third death from plague reported in the District since March 1, 1943.

Plague (rodent).-During the week ended March 27, 1943, 5 rats proved positive for plague were reported in Hamakua District, Island of Hawaii, T. H., as follows: 1 rat in Kapulena Area, 3 rats in Paauhau Area, and 1 rat in Honokaa Area.

## DEATHS DURING WEEK ENDED APRIL 10, 1943

[From the Weekly Mortality Index, issued by the Bureau of the Census, Department of Commerce]


## FOREIGN REPORTS

## CANADA

Provinces-Communicable diseases-Week ended March 20, 1943.During the week ended March 20, 1943, cases of certain communicable diseases were reported by the Dominion Bureau of Statistics of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Brunswick	$\begin{aligned} & \text { Que- } \\ & \text { bec } \end{aligned}$	Ontario	$\begin{gathered} \text { Mani- } \\ \text { tobs } \end{gathered}$	Sas-katchewan	$\underset{\text { berta }}{\text { Al- }}$	British Colum. bia	Total
Chickenpox		20	2	147	210	33	19	13	44	488
Diphtheria-...-.........-		23	9	25		5			2	64
Dysentery (amebic)					1					${ }_{16}^{16}$
Dysentery (baciliary)...-				16	3		1	4	8	67
Influenza-.....-.............-		43	12	22	28	7	152	2	469	71
Measles.		94	4	219	363	85	251	83	93	1,162
Meningitis, meningococ-			1	5		2	1		3	16
Mumps	1	204	5	97	1,068	118	94	103	152	1,842
Scarlet fever		3	56	118	185	24	36	45	21	488
Tuberculosis (all forms).-	5	8	2	117	63	18	22	12		247
Typhoid and paratyphoid fever			1	30			1			32
Undulant fever-...........-								12		1
Whooping cough.		3		93	150	63	19	12		340

## REPORTS OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND Yellow fever received during the current week

Notr.-Except in cases of unusual prevalence, only those places are included which had not previously reported any of the above-mentioned diseases, except yellow fever, during the current year. All reports of yellow fever are published currently.
A cumulative table showing the reported prevalence of these diseases for the year to date is published in the Purlic Healte Reports for the last Friday in each month.
(Few reports are available from the incaded countries of Europe and other nations in war zones.)

## Plague

Peru.-For the month of February 1943, 4 cases of plague were reported in Peru as follows: Department of Lima, Huaura, 2; Department of Lambayeque, Chiclayo, 2.

## Typhus Fever

Algeria.-For the period March 1-10, 1943, 373 cases of typhus fever were reported in Algeria, including 17 cases in Algiers, 13 cases in Azefon, 13 cases in Bone, 13 cases in Philippeville, 42 cases in Oran, and 10 cases in Mostaganem.

Guatemala.-For the month of February 1943, 101 cases of typhus fever were reported in Guatemala.

Hungary.-For the period March 21-27, 1943, 47 cases of typhus fever were reported in Hungary.


[^0]:    1 From the Division of Industrial Hygiene, National Institute of Health. The report for the third quarter appeared in Public Healti Repozts, 58: 232-234 (February 5, 1943).

[^1]:    1 Industrial injuries, venereal diseases, and a few numerically unimportant causes of disability are not reported.
    ${ }^{2}$ Except influenza, respiratory tuberculosis, and the venereal diseases.

[^2]:    ${ }^{1}$ New York City only. ${ }^{2}$ Period ended earlier th an Saturday. ${ }^{2}$ Delayed report of 15 cases included.

    - A later report shows 1,082 cases of measles in C olorado for the week ended Apr. 10 instead of the number previously published.

